
Integration, the VLSI Journal xxx (xxxx) xxx
Contents lists available at ScienceDirect

Integration, the VLSI Journal

journal homepage: www.elsevier.com/locate/vlsi
Multi-objective design space exploration for system partitioning of
FPGA-based Dynamic Partially Reconfigurable Systems

S.S. Sahoo a,*, T.D.A. Nguyen b, B. Veeravalli a, A. Kumar b

a Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
b Center for Advancing Electronics Dresden, Technische Universit€at Dresden, Dresden 01187, Germany
A R T I C L E I N F O

Keywords:
Dynamic partial reconfiguration
Field programmable gate arrays
Lifetime-aware scheduling
Task-graphs
Reliability
Heterogeneous systems
Real-time systems
* Corresponding author.
E-mail addresses: satyendra@u.nus.edu (S.S. Sah

dresden.de (A. Kumar).

https://doi.org/10.1016/j.vlsi.2018.10.006
Received 15 May 2018; Received in revised form 2
Available online xxxx
0167-9260/© 2018 Elsevier B.V. All rights reserved

Please cite this article as: S.S. Sahoo et al.,
Reconfigurable Systems, Integration, the VLS
A B S T R A C T

Dynamic Partial Reconfiguration (DPR) enables resource sharing in FPGA-based systems. It can also be used for
the mitigation of aging-related permanent faults by increasing the number of redundant Partially Reconfigurable
Regions (PRRs). Normally, these PRRs are able to host any of the Partially Reconfigurable Modules (PRMs), or
tasks, at one particular instance. This kind of system is called homogeneous. However, the FPGA resource con-
straints limit the amount of homogeneous redundancy that can be used and hence affect the lifetime of the system.
This issue can be addressed by utilizing the heterogeneous approach where each PRR now only hosts a subset of
the tasks. Further, the deadlines of the applications must also be taken care of in the design phase to decide the
mapping and scheduling of tasks to PRRs. To this end, we propose an application-specific multi-objective system-
level design methodology to determine the appropriate number of PRRs and the mapping and scheduling of tasks
to the PRRs. Specifically, we propose a lifetime-aware scheduling method that maximizes the system's mean time
to failure (MTTF) with different tolerances in the makespan specification of an application. We use the scheduler
along with an automated floorplanner for design space exploration at design-time to generate a feasible het-
erogeneous PRR-based system. Our experiments show that the heterogeneous systems can offer more than 2x
lifetime improvement over homogeneous ones. It also offers better scaling with increased tolerance in makespan
specification.
1. Introduction

Embedded systems are used in a host of different applications –

Consumer Electronics, Telephony, In-Vehicle Infotainment, Medical Equip-
ment, Automobiles, Military etc. – with widely varying performance and
dependability requirements. Reconfigurable systems, specifically FPGA,
have emerged as a key concept to cope with such diverse application
requirements [1]. Recent advancements in High Level Synthesis and
related design space exploration techniques have resulted in improved
performance estimation and programmability of a wide variety of
workloads on FPGAs [2,3]. The state-of-the-art FPGAs now can incor-
porate sophisticated multi-processor system-on-chip with hundreds of
general-purpose processors and hardware accelerators. A major enabling
factor behind such dense integration is the continuous technology scaling
and architectural innovations in the semiconductor industry over the last
four decades. However, the breakdown of Dennard Scaling has resulted
in the increase of power density. The situation is even worse with the
oo), tuan_duy_anh.nguyen1@tu-d

6 August 2018; Accepted 26 Oct

.

Multi-objective design space
I Journal, https://doi.org/10.1
reduced transistor size where the increased operating temperature due to
the higher power density leads to faster aging. Thus, the aging-related
intermittent and permanent faults occur more frequently, leading to
reduced system lifetime.

In reconfigurable platforms, Dynamic Partial Reconfiguration (DPR)
allows replacing some hardware modules at runtime without affecting
the rest of the system [4]. In addition to the ability to multiplex different
hardware accelerators (called Partially Reconfigurable Modules, PRMs)
on compatible Partially Reconfigurable Regions (PRR), DPR can be used
to mitigate the permanent hardware faults at runtime by migrating the
fault-effected PRM to another fault-free PRR. However, with such an
approach, the system lifetime depends on available PRR redundancy in
the system architecture. Most of the research into DPR-based system
design has been focused on homogeneous PRRs where each PRR can
accommodate any PRM. While it provides the flexibility to configure
each PRM to any PRR; given the limited FPGA resources, the redundancy
of PRRs is limited by the largest PRM and the size of the FPGA. Therefore,
resden.de (T.D.A. Nguyen), elebv@nus.edu.sg (B. Veeravalli), akash.kumar@tu-

ober 2018

exploration for system partitioning of FPGA-based Dynamic Partially
016/j.vlsi.2018.10.006

mailto:satyendra@u.nus.edu
mailto:tuan_duy_anh.nguyen1@tu-dresden.de
mailto:elebv@nus.edu.sg
mailto:akash.kumar@tu-dresden.de
mailto:akash.kumar@tu-dresden.de
www.sciencedirect.com/science/journal/01679260
www.elsevier.com/locate/vlsi 
https://doi.org/10.1016/j.vlsi.2018.10.006
https://doi.org/10.1016/j.vlsi.2018.10.006


S.S. Sahoo et al. Integration, the VLSI Journal xxx (xxxx) xxx
such an approach might not be appropriate for PRMs that have large
resources variation.

The aforementioned issue opens a possibility of using heterogeneous
systems to utilize the FPGA resources better. The heterogeneity of the
PRRs is in terms of their compatibility to different PRMs. The PRRs in
such heterogeneous systems now only host a subset of the original list of
PRMs. The incompatibility of a specific PRR to some PRMs is due to the
insufficient resources allocated to the PRR. Homogeneous PRRs, on the
other hand, are compatible with all PRMs in the list. This new freedom of
assigning PRMs to PRRs leads to an interesting observation that it can be
optimized to proactively improve the lifetime of the system. Aging-
related fault rates are usually proportional to the number of execution
cycles of the PRM on the PRR [5]. Therefore, an aging-aware approach to
task-scheduling on reconfigurable platforms can increase the system
lifetime by distributing the execution of stress-inducing PRMs across
different PRRs. To this end, we propose a design-time methodology that
analyses the PRM-PRR mapping/scheduling space in both homogeneous
and heterogeneous system for improving system lifetime.

Contributions: Our contributions are listed below.

1. A lifetime-aware scheduler to improve the expected lifetime in DPR
systems. In Ref. [6], we proposed a Mixed Integer Linear Programming
(MILP)-based problem formulation and optimization methodology to
incorporate the aging effect of individual PRMs to minimize the
overall aging of each PRR and hence extend the overall lifetime of the
system – for both homogeneous and heterogeneous systems. In our
current work, we propose a Genetic Algorithm (GA)-based optimiza-
tion approach that can be used for larger application sets and for
multi-objective optimization.

2. A resource-constraint-aware system partitioningmethodology to
make sure that the final system can make use of the available FPGA
resources more efficiently. The final system can be homogeneous or
heterogeneous depending on the needs of the system designer. The
design methodology is integrated with the state-of-the-art PR-floor-
planner to verify the feasibility of implementing the system on the
FPGA. The methodology was implemented using both the MILP-based
and GA-based approach.

3. A multi-objective optimization case-study was investigated using
the proposed approach. Specifically, we compared the performance
scaling of the homogeneous PRR (HomPRR)-based and heterogeneous
PRR (HetPRR)-based systems with increasing tolerances to the
makespan requirements of an application.

We provide a brief overview of aging-mitigation techniques in FPGA-
based systems and state-of-the-art research in DPR-based systems in Sec-
tion 2. In Section 3, we provide a detailed description of our system
model. Various stages of the proposed DPR system design methodology is
detailed in Section 4. The experiment setup and results for evaluating the
proposed design methodology are described in Section 5. Finally, we
conclude the paper in Section 6 with directions and scope for future work.

2. Background and related work

Lifetime Reliability: Solid-state devices tend to degrade with time
and stress. Transistor scaling and higher temperatures make the devices
more susceptible and accelerates the occurrence of aging-related faults.
Recent surveys suggest that the fault rates in processing elements (PEs)
correlate with the number of cycles executed by the PE [5]. Fault
mechanisms that are activated by wear-out, resulting in the faults are –

Gate-oxide breakdown, Negative Bias Thermal Instability, Hot Carrier Injec-
tion, and Electromigration. A detailed description of these mechanisms can
be found in Refs. [7,8].

Various approaches have been proposed for mitigating the aging ef-
fects in FPGAs. In Ref. [8], the authors propose a few phenomenon-specific
methods such as selective alternate routing, load balancing, and leakage
optimization to counter each failure mechanism. In Ref. [9], the authors
2

propose three wear-levelling techniques to reduce electrical stress
hot-spots. The discussed methods provide generic reconfiguration solu-
tions and do not consider any application-specific requirements like
deadlines and periodicity and FPGA resource constraints. Such methods
can be augmented to improve the performance of system-level design
techniques discussed in this article.

Dynamic Partial Reconfiguration: DPR enables different PRMs to
share the same PRRs in a time-multiplexed way leading to the use of
smaller devices with potentially reduced power consumption while
maintaining the same functionality. In addition to power and perfor-
mance benefits, DPR offers a method for mitigating permanent faults.
DPR-based lifetime extension methods can be broadly classified into two
approaches: Reactive and Pro-active. The former approach involves relo-
cating the PRMs from a faulty PRR to another functional one. The Pro-
activemethods, on the other hand, aim to reduce the electric stress on the
PRRs by distributing it across multiple PRRs, thereby reducing their
wear-out. In our current work, we focus on improving the system's mean
time to failure with the pro-active approach. An aging-aware floorplanner
along with a proactive aging-aware reconfiguration policy was proposed
in Ref. [10] which aims to reduce the stress on PRRs by using the
delay-based degradation estimates of previous execution cycles. In
Ref. [11], the authors propose a methodology to periodically swap
multiple bitstreams of the same PRM in which Configurable Logic Blocks
(CLB) placements are different. In Ref. [12], a cross-layer aging-aware
placement method for accelerators in FPGA-based runtime reconfig-
urable architectures is proposed. The described methodology involves
module diversification, as proposed in Ref. [11], during synthesis and
stress-aware placement at runtime to reduce wear-out. A stress-aware
placement algorithm for DPR systems, that uses run-time aging estima-
tion, is proposed in Ref. [13]. In Ref. [14], the authors propose a
distributed architecture that uses DPR to mitigate soft-errors and per-
manent hardware faults in FPGA-based systems. The proposed method-
ology uses distributed control and same reactive recovery mechanism for
all faults, thereby providing predictable recovery time.

The DSE for application-specific, DPR-based FPGA system design in-
volves multiple design challenges, namely – Task-to-PRR scheduling, PRR
resource allocation, and multi-objective optimization. Considering all these
aspects together can lead to an explosion in the design space. As shown in
Table 1, most state-of-the-art approaches do not consider all aspects of
the problem. For example, most of the proactive approaches to DPR-
based lifetime extension assume homogeneous PRRs. Such an assump-
tion simplifies the PRM to PRR mapping and reduces the complexity of
designing mitigation techniques. However, if the PRMs have a large
variation in their resource requirements, each PRR area is dictated by the
most resource consuming PRM. With limited reconfigurable resources,
this can lead to reduced spatial redundancy and may result in reduced
performance. Further, the most stress-inducing PRM dictates the aging of
each PRR. A smaller PRM, that uses only a fraction of the available ho-
mogeneous PRR, but causes more electrical stress, can lead to faster aging
and potentially unusable PRR. Similarly, while MILP-based methods may
be sufficient for single-objective optimization, such methods do not scale
with an increasing number of objectives and the problem size. Therefore,
we propose a novel application-specific heterogeneous PRR-based
partially reconfigurable system design methodology that uses both
analytical and stochastic search-based optimization methods.

3. System model

3.1. Architecture model

In this work, we perform Design Space Exploration (DSE) on various
DPR systems with a varying number of PRRs to find the system configu-
ration which gives the best lifetime. In any DPR system, besides PRRs,
there are other static modules that make up the whole functional system
such as network-on-chip, reconfiguration/resource manager, reconfigu-
ration module, etc. The system template must be flexible enough to



Table 1
Comparing related work.

Comparison Criteria Optimization Objectives PRR Heterogeneity Design Activities

Related Work Single Multiple Homogeneous Heterogeneous Scheduling System Partitioning

Current Work Aging mitigation, Performance ✔ ✔ ✔ ✔ ✔

[10] Aging mitigation ✘ ✔ ✘ ✘ ✘

[11] Aging mitigation ✘ ✔ ✘ ✔ ✘

[12] Aging mitigation, Performance ✔ ✔ ✘ ✔ ✘

[13] Aging mitigation ✘ ✔ ✘ ✘ ✘

[14] Fault tolerance, Performance ✔ ✔ ✘ ✔ ✘

S.S. Sahoo et al. Integration, the VLSI Journal xxx (xxxx) xxx
automatically instantiate the corresponding static modules to support the
varying number of PRRs. Therefore, we utilize the PR-HMPSoC template
provided by Nguyen et al. [15]. Overview of PR-HMPSoC is shown in
Fig. 1a. All Tiles (or PEs) are connected to a network-on-chip for high
bandwidth communication between them. The interactions with periph-
erals are done via the PLB bus. Each tile corresponds to one PRR.

We represent each PRR Rr with the parameters shown in Fig. 1b,
where r is the prrID and varies between 1 and R, where R is the number of
PRRs. Any parameter param > of rth PRR is represented as param >r.

3.2. Application model

Mathematically, we model an application as Gapp ¼ (Tapp, Eapp,Papp),
where Tapp, Eapp and Papp correspondingly represent the set of task nodes,
the directed connectivity of the nodes representing task dependencies,
and the periodicity of the application. Fig. 2a shows the application
model represented as task-graphs. Fig. 2b describes the parameters used
to represent each task node in the task-graph. The resource requirement
and expected lifetime parameters represent the estimated resources used
in the implementation of the accelerator or PRM and the estimated
lifetime respectively. The deadline parameter TaskD implements the real-
time behaviour of the application. For the rest of the article, any
parameter param > of tth task node will be represented as param >t,
where t is the TaskID and varies between 1 and jTappj.

3.3. Lifetime Reliability model

We represent the expected lifetime of the system, SysMTTF, by the
Fig. 1. Architec

3

Mean Time to Failure (MTTF) of the system. The reliability model used is
similar to that presented in Ref. [16]. Assuming a Weibull distribution of
failures, the reliability of hardware resources and corresponding MTTF
can be represented as shown in Equation (1). β, the shape parameter, can
be used to represent the hardware fault profile and η, the scale parameter,
represents the inverse of the aging effect of executing some PRM on the
hardware.

RðtÞ ¼ e�ð tηÞ
β

;MTTF ¼ η� Γð1þ 1=β Þ (1)

Considering the temporal variation in aging effect, caused by the time
multiplexing of different PRMs on a PRR, the effective scale parameter
ηeff over a time interval t can be obtained as shown in Equation (2). ηi and
MTTFi represent the aging effect due to the execution of ith PRM on a
PRR.

ηeff ¼
P

ΔtiP�
Δti
ηi

� ; t ¼
X

Δti ; ηi ¼
MTTFi

Γ
�
1þ 1

β

� (2)

Considering Papp as the representative time interval, the effective
MTTF of a PRR, prrMTTF, and SysMTTF can be obtained as shown in
Equation (3).M refers to the number of tasks mapped on the PRR. We do
not include the effect of process variations in our model. Hence, the shape
parameter β remains constant.

prrMTTFr ¼ PappPM
i¼1

ExecTi
TaskMTTFi

; SysMTTF ¼ min
all PRRs

prrMTTFr (3)
ture model.



Fig. 2. Application model.

S.S. Sahoo et al. Integration, the VLSI Journal xxx (xxxx) xxx
4. Lifetime-aware system partitioning methodology

The overall flow of the proposed design methodology is shown in
Fig. 3. We use the application task-graph to generate a feasible execution
trace of that application. This trace is then used during the design space
exploration (DSE) to enforce precedence constraints among tasks to
determine the appropriate PRR to map to each task node. The PRMs'
MTTF values, determined during PRM characterization stage, are used to
constrain the optimizer to solve for maximum expected system MTTF.
DPR resource estimation stage involves estimating the available re-
sources for DPR after generating the static components of the system.
This information, along with PRMs' resource requirement estimates ob-
tained during PRM characterization, is used to implement the resource
constraints of the system. Floorplanning stage involves verifying the
feasibility of the heterogeneous mapping information generated by the
optimizer and getting a feasible system design. We perform DSE to find
the maximum number of PRRs that maximizes the SysMTTF and is still
feasible within the limited resources of the FPGA. We obtain this by
incrementing the number of PRRs in the system, solving the appropriate
optimization problem and using PRFloor to find the feasibility of the
design. The DSE is completed when the optimizer fails to find a valid
mapping of tasks to PRRs. The results from all the problems solved with
varying number of PRRs are collected to generate the result – a best
possible SysMTTF or a Pareto front for multiple objectives.

4.1. DPR resource estimation

The DPR system consists of static components in addition to the DPR
Fig. 3. Methodology for design of Lifetime-aware Dynamic Partially Reconfig-
urable Systems.

4

resources. The amount of FPGA resources dedicated to static components
varies with the number of PRRs implemented in the system. We use the
automatic floorplanner, PRFLoor [17] to estimate the remaining re-
sources in terms of number of CLBs, Block RAMs (BRAMs), and Digital
Signal Processing blocks (DSPs), that can be utilized for creating het-
erogeneous PRRs. We denote the remaining DPR resource quantities by
remCLBs, remBRAMs, and remDSPs.

4.2. PRM characterization

Each PRM is characterized by determining their resource requirements
and their aging effect. Each task node of the application task-graph involves
the execution of any one of the PRMs. Hence, the resource requirements for
each task is obtained from the synthesis of the respective PRMs. Similarly,
the power estimation from the synthesized netlist is used to generate the
expected junction temperature. Out of the four dominant wear-out
methods, we model the EM-related wear-out failures for our current
work. However, any other effects can be easily incorporated either indi-
vidually or using the Sum-of-Failure Rate (SOFR) model for any combina-
tion of the failuremechanisms. The estimated aging effect at temperatureTi
can be obtained based on the relation shown in Equation (4). A0 is a con-
stant determined by the physical interconnect, Ea is the activation energy, J
(and Jcrit) refer to the current density (and critical current density), n is an
empirically determined constant, and K is the Boltzmann constant.

ηðTiÞ ¼ A0ðJ � JcritÞ�n e
Ea
KTi

Γ
�
1þ 1

β

� (4)

4.3. Execution trace generation

A greedy algorithm is used to generate a list, ExecTrace, of tasks from
the application task-graph. A two-stage approach is used for this purpose.
In the first stage, we update the StartTt and EndTt of each task t, with the
assumption of infinite parallel resources available in the system. This
provides us with the best case StartTt of each task. In the second stage, we
create a linear array of tasks Exec trace by using a greedy approach. We
parse through all tasks in the set Tapp that are not already in Exec trace. A
list of all feasible options for the next entry into ExecTrace, i.e. tasks
whose parent nodes are already in the trace, is generated. From this list,
we choose the task with the least ExecTt as the next entry in ExecTrace.
This linear list of tasks prevents the solver from evaluating infeasible
sequences of task executions.



S.S. Sahoo et al. Integration, the VLSI Journal xxx (xxxx) xxx
4.4. Optimization problem formulation

4.4.1. MILP-based optimization
The MILP problem formulation and its solution are used to determine

the Task to PRR mapping. We formulate the problem as finding appro-
priate entries for a binary-valued matrix, Mapping Matrix, shown in
Fig. 4a. The columns correspond to the tasks in the Exec Trace, and the
rows correspond to the available PRRs in the system. Hence the Mapping
Matrix is of size R� jTappj. The matrix entries rt(r,t) denote whether task t
is executed (rt(r,t)¼ 1) on PRR r or not (rt(r,t)¼ 0). The different con-
straints and the objective function of the MILP are described below.

Deadline constraints: For every task t, with a deadline, a constraint,
StartTt þ ExecTt� TaskDt, is added to the problem.

Dependability constraints: For every task t, a constraint for every
parent task node p a constraint: StartTt� StartTp þ ExecTp, is used in the
problem formulation.

Task start time constraints: For a task-PRR pair (t,r), we introduce a
new variable StartT(t,r) that signifies feasible start time of task t when
mapped to PRR r. Since the execution trace signifies a sequence of task
execution, the first relation in Equation (5) signifies the feasible values of
StartT(t,r). The second relation in the equation provides the overall
equivalent start time of the task.

For every task; t; for every PRR; r :

StartTðt;rÞ �
Xt�1

i¼1

�
StartTði;rÞ þ ExecTi

�� rtðr;iÞ

where; i is any task that is before t in ExecTrace

For each task t; StartTt ¼
XR
r¼1

StartTðt;rÞ � rtðr;tÞ

(5)

Lifetime Constraints: For each PRR, we use a variable, InvMTTFr ¼
PT
t¼1

ExecTt�rtðr;tÞ
TaskMTTFt

, to denote the net aging effect on a PRR in each cycle. It can

be inferred from Equation (3), maximizing for SysMTTf is equivalent to
minimizing the maximum of InvMTTFr across all PRRs. Therefore, we use
a variable SysInvMTTF to denote the maximum InvMTTFr.

Resource Constraints: For any task to be executed on a PRR, the PRR
must have sufficient resources. Further, the sum of all resources in all
PRRs must be less than the remaining resources for DPR. Equation (6)
shows the resource constraints used in the MILP formulation.

For every task t; for every PRR r :
prrCLBsr � TaskCLBst � rtðr;tÞ
prrDSPsr � TaskDSPst � rtðr;tÞ
prrBRAMsr � TaskBRAMst � rtðr;tÞ
Overall Resources :

remCLBs �
XR
r¼1

prrCLBsr ;

remDSPs �
XR
r¼1

prrDSPsr

remBRAMs �
XR
r¼1

prrBRAMsr

(6)
Fig. 4. Optimization for sy

5

Objective Function: To compare the performance of our lifetime-
aware scheduler, we run two optimization modes:

Mode 1: We maximize the system lifetime with the objective function:
Minimize SysInvMTTF.

Mode 2: We minimize the makespan of the application by minimizing
the start time of the last task. The corresponding objective function:
Minimize StartTT.

4.4.2. GA-based optimization
The optimized PRM–PRR scheduling is obtained by executing the PRM

for each task on an appropriate PRR at the right time. Different PRM-PRR
schedules for all tasks of an application will result in varying resource
requirements for each PRR (and the system), prrMTTF (and SysMTTF) and
makespan (SysMS) for the application. We propose a Genetic Algorithm
(GA)-based multi-objective optimization method for both SystemMTTF
and SysMS. Each of the ordered sequences shown in Fig. 4b denotes an
individual of a population. Each individual contains T sub-sequences, one
for each task in the application task-graph. Therefore, each individual
encodes one schedule for all tasks in an application. Each sub-sequence,
s(i,q), of ith individual in the population can be represented by the tuple
(t(i,q),r(i,q), the task index and the PRR index respectively. The task execu-
tion schedule on each PRR, θr, is implicitly determined by the order of task
indexes in the sequence (for each PRR). Each individual in the population,
Si, denotes a point on the design space and can be quantified by the tuple of
metrics:(SysMTTFi, SysMSi, SysCLBsi, SysBRAMsi, SysDSPsi), where:

SysCLBsi �
XR
r¼1

prrCLBsr ;

SysDSPsi �
XR
r¼1

prrDSPsr

SysBRAMsi �
XR
r¼1

prrBRAMsr

(7)

The optimization problem can then be defined as searching for an
optimal sequence Sopt that maximizes the reward function:

Rwdi ¼ WtMTTF � SysMTTFi �WtMS � SysMSi þ CostINðiÞ (8)

In Equation (8), WtMTTF and WtMS denote the user specified impor-
tance to MTTF and makespan. The cost CostIN denotes the cost of in-
feasibility w.r.t. the FPGA resource and the makespan specification
(SpecMS). It is expressed as:

CostINðiÞ ¼

8>>>><
>>>>:

�100000; if SysCLBsi > remCLBs
�100000; if SysDSPsi > remDSPs

�100000; if SysBRAMsi > remBRAMs
�100000; if SysMSi > SpecMS

0; otherwise

(9)

GA-based optimization involves traversing the design space by
generating new (and better) individuals for each subsequent generation.
We use the following operations for generating new individuals for the
next generation's population.
stem partitioning DSE.



S.S. Sahoo et al. Integration, the VLSI Journal xxx (xxxx) xxx
Crossover: We use the following two operations for implementing
crossover between two individuals of a generation – As shown in Fig. 6a,
we implement a two-point crossover for exchanging the PRR configu-
ration data of some tasks – determined by the two randomly selected
crossover points. Further, we use a single-point crossover, as shown in
Fig. 6b, to exchange the scheduling information of some tasks – deter-
mined by the same randomly selected point in the two sequences.

Mutation: Mutation is essential for preventing the search from getting
trapped in some local maxima. As shown in Fig. 5b, we use a singlepoint
mutation for randomly altering the PRR configuration of a randomly
selected task. Further, we implement a two-point mutation for altering
scheduling data by swapping the position of two randomly selected sub-
sequences, as shown in Fig. 5a.

Selection: We use a tournament selection method for choosing in-
dividuals for the next generation. This selection method involves
randomly choosing 3 (in our case) individuals from the current popula-
tion and selecting the one with best fitness for the next generation. The
population size for each generation is kept constant by repeating the
selection process for a number of times equal to the population size.
4.5. Floorplanning

The automatic floorplanning tool PRFloor [17] is used to verify the
feasibility of the mapping generated by the MILP solver.

5. Experiments and results

5.1. Experiment setup

All our experiments are run on a computer with two CPUs – IntelTM

XeonTM E5-2609 v2 @ 2.50 GHz (each CPU is quad-core) and 32 GB of
memory. The operating system is Ubuntu 14.04 LTS 64-bit. Even though
our method is made general enough for all kinds of Xilinx FPGA, the one
we are experimenting with is Virtex-6 XC6VLX240T. Gurobi Solver [18]
is used to solve our scheduler with parameter Presolve¼ 2. The
PR-HMPSoC template is provided by Nguyen et al. [15] together with the
floorplanner, PRFloor [17].

Experiments for performance evaluation involved using synthetic
application task-graphs with varying number of tasks. These task-graphs
were generated using Task Graphs for Free (TGFF) tool [19]. Further,
task-graphs with different levels of branching and depth were used to
Fig. 5. Mu

Fig. 6. Cros

6

compare the performance. We use terms Fat and Slim to describe appli-
cations that demand higher parallel resources and longer serial chains
respectively as shown in Fig. 7. Each task can be considered as a specific
function that is realized by an accelerator. The hardware implementation
of each such accelerator represents a PRM that has to be mapped to a PRR
to execute its functionality. The tasks for each application task-graph
were randomly selected from the set of PRMs described in the next
sub-section. Further, PRM sets with varying range of resource re-
quirements were used for evaluation.

5.2. IP pool

In this work, we collected 50 real-world hardware accelerators
(PRMs) from CHStone benchmarks [20], Opencores [21], EPFL bench-
mark [22] and Xilinx XPS IP core library [23]. Table 2 shows several
notable PRMs out of the 50 PRMs used in the experiments. The resources
requirement from the synthesis report and operating temperature ob-
tained from Xilinx Vivado HDL Power Analysis Tool are also provided. As
can be seen, the sizes and operating temperature of the PRMs vary quite
significantly which reflect the real-world requirements. The MTTF for
different PRMs was obtained using the relation shown in Equation (4).
The scaling parameter was used to obtain an MTTF of 75 years at 25 and
the PRMs' MTTF values were truncated and scaled to obtain a range of
2–10 years. Please note that our contributions do not include the PRM
characterization. We used the generated data to get realistic estimates
about the performance of our proposed lifetime-aware scheduler and
heterogeneous system design tool. More accurate estimates of PRMs'
MTTF can be plugged directly into our proposed flow to perform a more
accurate analysis. In Ref. [17], the authors mention the discrepancy be-
tween the resource usages of PRMs obtained from the synthesis reports
versus the actual physical occupation when they are placed on the FPGA.
If our lifetime-aware scheduler does not take this issue into account, it
may blindly map PRMs to PRRs that results in a design which is too big to
implement. Therefore, we utilize our in-house tool to predict the re-
sources occupied by the PRMs after placement. The actual PRM resources
used by our lifetime-aware scheduler to build the MILP program are
therefore larger. However, they reflect the actual resources occupation
on FPGA more accurately.
tation.

s-over.



Table 2
Several notable PRMs used in the experiments.

PRM LUT BRAM DSP Temp(C) Lifetime Source

DFDIV 7309 1 24 96.8 3.3 CHStone
DFMUL 4051 1 16 82.6 5.6 CHStone
Log2 8212 0 0 125.0 2.0 EPFL
ADPCM 6222 6 126 125.0 2.0 OpenCores
FFT1024 19796 18 52 125.0 2.0 OpenCores
SHA 3069 20 0 27.2 10.0 OpenCores
JPEG 6581 11 10 120.4 2.0 OpenCores
Video Stream
Scaler

524 2 11 59.0 9.0 Xilinx

Video Test
Pattern

2543 3 12 56.3 8.5 Xilinx

Microblaze
(Max Area)

5539 5 6 125 2.0 Xilinx

Fig. 7. Fat and Slim application task-graphs. Both the task-graphs have 50 tasks each with deadlines of 1000 and 2000 time units respectively.

Fig. 8. Fat applications

S.S. Sahoo et al. Integration, the VLSI Journal xxx (xxxx) xxx

7

5.3. MILP-based system partitioning

To estimate the performance of the MILP-based scheduler and het-
erogeneous PRR-based systems simultaneously, we performed experi-
ments in 4 modes. Mode 1_1 and Mode 1_2 refer to the maximization of
system lifetime and minimization of application makespan respectively
in a heterogeneous PRR system. Similarly,Mode 2_1 andMode 2_2 refer to
optimization of system lifetime and makespan respectively in a homo-
geneous PRR system. We limit the number of available PRRs to 15, as the
homogeneous system design fails for all cases beyond that. Applications
with increasing number of tasks – from 5 to 50 and in increments of 5 –

were used for the experimental evaluation.
We quantify the performance of our proposed methodology in terms

of the system MTTF. Figs. 8a, 9, 10a and 11a show the result for all four
with large PRMs.



Fig. 9. SysMTTF in Slim applications with large PRMs.

Fig. 10. Fat applications with small PRMs.

S.S. Sahoo et al. Integration, the VLSI Journal xxx (xxxx) xxx
modes for different scenarios – applications with a different number of
tasks, set of PRMs with different resource distribution (small/large
PRMs) and type of applications (Fat/Slim). The bars represent the
maximum systemMTTF in years, among all feasible values of the number
of PRRs, R, for each mode. The minimum values of R at which we obtain
the maximum MTTF for a mode are shown as labelled markers in the
figure.

Figs. 8b, 10b and 11b provide detailed results for a representative
application (with 25 tasks) under different scenarios. They show the
variation in system MTTF with increasing number of PRRs in the system.
The performance of the proposed methodology in different scenarios is
discussed next.

5.3.1. Lifetime Reliability-aware scheduling
The system's MTTF (SysMTTF) obtained using the lifetime-aware

scheduler (Mode *_1), shows a considerable increase over a makespan-
optimization approach (Mode *_2) for almost every scenario.

In applications with very few tasks (e.g. 10 tasks in Figs. 10a and 11a),
both scheduling modes exhibit similar performance. In smaller task-
graphs, the scope for improvement of system lifetime is limited as
8

there are insufficient tasks to exploit the parallelism. In our current work,
we are yet to explore the effect of having redundant PRRs, created from
the spare DPR resources and is left for future research. We only consider
applications with enough tasks to exploit all available parallelism in the
system. So, the results for minimum makespan are similar to that of
aging-aware optimization for smaller task-graphs.

In Fig. 8b (with 4 PRRs), it can be observed that the aging-aware
scheduler, unlike makespan optimization, could not find a feasible
result. This is expected as the deadline constraints imposed in the aging-
aware MILP are not used in the makespan optimization. Similar behav-
iour can also be observed in Fig. 10a for 50 tasks. Here, the maximum
achievable parallelism in both homogeneous and heterogeneous PRR
types is insufficient for meeting the application deadline.

Further, for all scenarios, the quality of results of our aging-aware
scheduler increases with increasing number of PRRs in the system. The
scheduler uses increasingly available parallel resources to spread the
electrical stress spatially, thereby reducing stress hotspots, resulting in an
improved lifetime. In some cases, the scheduler performance flattens
beyond a certain point. In Fig. 8b there are no improvements beyond 13
PRRs, as the resource redistribution to create additional heterogeneous



Fig. 11. Slim applications with small PRMs.

Fig. 12. Average improvement in System MTTF across different tolerances to
SpecMS. The vertical axis indicates the ratio of system MTTF due to HetPRRs to
that using HomPRRs.

S.S. Sahoo et al. Integration, the VLSI Journal xxx (xxxx) xxx
PRRs, does not result in extra PRRs for the more stress-inducing PRMs.
Similarly, as shown in Fig. 10b, performance benefits with the aging-
aware scheduler do not improve beyond 11 PRRs for either homoge-
neous or heterogeneous PRRs as the aging is dominated by one single
PRM mapped to one PRR.

Overall, it can be concluded that the aging-aware scheduler results in
considerable system lifetime improvements over our baseline makespan
optimization scheduler, irrespective of the heterogeneity of PRRs.

5.3.2. Lifetime-aware DPR-based system design
The aging-aware scheduler was used in conjunction with the DPR

resource constraints of the system to generate the PRM to PRR mappings
that maximize the system MTTF. Table 3 summarizes the improvements
of a heterogeneous system over a homogeneous one for different sce-
narios. The entries in bold-face signify the inability to find a feasible
homogeneous design for the application.

For scenarios that use large PRMs, we observe significant improve-
ments by using a heterogeneous system. Since homogeneous PRRs need
to be compatible with all PRMs, the size of each PRR is significantly
increased to accommodate the largest PRM. Therefore, the resource
constraints of the FPGA limit the number of maximum parallelism with
such large PRRs. The reduced parallelism may be insufficient for meeting
deadlines for real-time applications. A heterogeneous system, on the
other hand, allows redistribution of resources to create more PRRs for
PRMs that need more parallel modules. As shown in Fig. 8a, the
Table 3
SysMTTF Improvements of Heterogeneous vs. Homogeneous Systems.

Scenarios T¼ 5 T¼ 10 T¼ 15 T¼ 20 T¼
Fat, Large 0.00 0.21 0.82 0.75 1.52
Slim, Large 0.00 0.00 1.24 1.36 1.42
Fat, Small 0.00 0.00 0.00 0.00 0.00
Slim, Small 0.00 0.00 0.00 0.00 0.05

9

homogeneous system design fails for Fat applications with 35 or more
tasks.

In the scenarios where both types of systems are feasible, heteroge-
neity allows allocation of more PRRs that are compatible with the more
stress-inducing PRMs, thereby increasing the system MTTF. As seen in
Fig. 8b, the homogeneous system can support only 5 PRRs compared to a
heterogeneous system with up to 15 PRRs. The additional PRRs were
25 T¼ 30 T¼ 35 T¼ 40 T¼ 45 T¼ 50

1.37 6.62 7.96 8.33 7.33
1.95 9.57 1.76 13.16 1.13
0.00 0.17 0.06 0.06 0.00
0.11 0.00 0.00 0.08 0.00



Fig. 13. Scaling with increasing SpecMS.

S.S. Sahoo et al. Integration, the VLSI Journal xxx (xxxx) xxx
used to accommodate the more stress-inducing PRMs, and show im-
provements in system MTTF for up to 13 PRRs. The flattening of per-
formance beyond that was explained in Section 5.3.1.

For Slim applications with large PRMs, the heterogeneous approach
ensures feasibility for all applications. The homogeneous system design
may lead to infeasible results based on the parallelism requirements of
the application for meeting deadlines.

In the scenarios with small PRMs, the resource constraints do not play
a significant role. Therefore, the PRR count can be increased considerably
for homogeneous systems to achieve the required level of parallelism.
Hence, heterogeneous systems do not show any significant improve-
ments in lifetime or feasibility over homogeneous ones. As shown in
Figs. 10a and 11a, both the systems perform almost similarly for all
scenarios. Both approaches fail to generate feasible designs for a Fat
application with 50 tasks, as the resources are insufficient for providing
adequate parallelism. As seen in Figs. 10b and 11b, with increasing
number of PRRs, the performance of the homogeneous system matches
that of the heterogeneous system till there are sufficient resources for
creating more homogeneous PRRs. Therefore, for smaller PRMs, the
proposed design methodology allocates sufficient resources to each PRR
to create a homogeneous system.

5.4. GA-based multi-objective system partitioning

Similar to the MILP-based optimization, evaluating the GA-based
methodology involved comparing the performance of HomPRR and
HetPRR based system partitioning with applications of two types – Fat
and Slim– and increasing number of tasks – 10, 20, 30 … 100. To
demonstrate the multi-objective DSE, the SysMTTF at different values of
SpecMS was obtained to generate the Pareto front. The different values for
SpecMS were obtained by scaling the critical path length of the application
under test. The GA framework from Ref. [24] is used in this work to
implement the proposed methods. The parameters used in the GA-based
DSE are mentioned below:

Starting population: 500
Maximum generations: 100
Crossover probability: 0.7
Mutation probability: 0.3

Fig. 12 shows the average improvement in HetPRR-based SysMTTF
over systems using HomPRRs across all experiments with different values
of SpecMS. Each bar in the figure shows the average ratio of SysMTTFwith
HetPRRs to that using HomPRRs, for applications of different type and
having a varying number of tasks. Similar to our results fromMILP-based
system partitioning, HetPRR-based systems exhibit considerable im-
provements (denoted by values > 1.0) in SysMTTF for all cases, with up
to ~ 2.5x improvements in a Fat application with 30 tasks.
10
Fig. 13 shows the average performance scaling comparison for
HetPRR and HomPRR based systems for each type of application under
increasing values for the constraint SpecMS. The average improvements
normalized w.r.t. the lowest valued SysMTTF across all Pareto fronts are
shown in the figure. As evident from the figure, the HetPRR-based sys-
tems show better scaling with increasing relaxations in SpecMS constraints
across both application types – Fat and Slim. The starting scaling factor
for SpecMS relaxation was chosen for the case (type and number of tasks)
that has at-least one feasible point for both types of PRR-based system.

The Pareto-front plots in Figs. A.14, and B.15 show the detailed
optimization results for the trade-offs w.r.t. SysMTTF and SysMS for all
application cases. The points marked with star (✩) on the curves repre-
sent the infeasible points w.r.t. the SpecMS constraint. In both cases of
application types, the HomPRR-based systems show more of such infea-
sible points compared to the HetPRR systems. This can be explained by
the lack of resources to generate the sufficient number of homogeneous
PRRs required for the parallelism needed to complete application
execution within the specified SpecMS constraint. Further, the Pareto-
fronts obtained with HetPRRs are almost always better than that using
HomPRRs, signifying more efficient multi-objective optimization.

6. Conclusion

In this work, we propose a novel lifetime-aware proactive method-
ology DPR-based system design. Our approach analyses different aspects
of designing such systems – the aging effects of PRMs, the dependencies
between them from the application task-graph, the PR-based system ar-
chitecture and FPGA resource constraints. This information is used to
build optimization problems for MILP-based solver and GA-based sto-
chastic search. The PRRs of the resulting system are heterogeneous
leading to more efficient usage of the FPGA resources for improving the
system lifetime. Further, we propose a multi-objective DSE for system
partitioning. Our experiments show that the heterogeneous systems can
offer more than 2x lifetime improvement over homogeneous ones and
show better scaling with increasing makespan specification. Currently,
we are working on exploring the possibility of having more heteroge-
neous PRRs as redundancy resources to obtain appropriate trade-offs
between aging mitigation and tolerance against external faults. Future
research is required for adding more metrics to the multi-objective
problem to enable increased application-specific design.

Acknowledgements

This work is supported in part by the German Research Foundation
(DFG) within the Cluster of Excellence "Center for Advancing Electronics
Dresden" (cfaed) at the TU Dresden and the HiPEAC4 Network of
Excellence.



S.S. Sahoo et al. Integration, the VLSI Journal xxx (xxxx) xxx
Appendix A. Pareto plots for fat applications
Fig. A.14. Pareto fronts for F at task-graphs.

11



S.S. Sahoo et al. Integration, the VLSI Journal xxx (xxxx) xxx
Appendix B. Pareto plots for slim applications
Fig. B.15. Pareto fronts

12
for Slim task-graphs.



S.S. Sahoo et al. Integration, the VLSI Journal xxx (xxxx) xxx
References

[1] M. Glesner, H. Hinkelmann, T. Hollstein, L.S. Indrusiak, T. Murgan, A.M. Obeid,
M. Petrov, T. Pionteck, P. Zipf, Reconfigurable embedded systems: an application-
oriented perspective on architectures and design techniques, in: T.D. H€am€al€ainen,
A.D. Pimentel, J. Takala, S. Vassiliadis (Eds.), Embedded Computer Systems:
Architectures, Modeling, and Simulation, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2005, pp. 12–21.

[2] J. Zhao, L. Feng, S. Sinha, W. Zhang, Y. Liang, B. He, COMBA: a comprehensive
model-based analysis framework for high level synthesis of real applications, in:
2017 IEEE/ACM International Conference on Computer-aided Design (ICCAD),
2017, pp. 430–437.

[3] S. Wang, Y. Liang, W. Zhang, FlexCL: an analytical performance model for OpenCL
workloads on flexible FPGAs, in: 2017 54th ACM/EDAC/IEEE Design Automation
Conference (DAC), 2017, pp. 1–6.

[4] D. Koch, Partial Reconfiguration on FPGAs: Architectures, Tools and Applications,
Springer Science & Business Media, 2012.

[5] C. Bird, V.-P. Ranganath, T. Zimmermann, N. Nagappan, A. Zeller, Extrinsic
influence factors in software reliability: a study of 200,000 windows machines, in:
Companion Proceedings of the 36th International Conference on Software
Engineering, ICSE Companion 2014, ACM, New York, NY, USA, 2014, pp. 205–214.
http://doi.acm.org/10.1145/2591062.2591173.

[6] S.S. Sahoo, T.D.A. Nguyen, B. Veeravalli, A. Kumar, Lifetime-aware design
methodology for dynamic partially reconfigurable systems, in: 23rd Asia and South
Pacific Design Automation Conference, ASP-DAC 2018, Jeju, Korea (South),
January 22-25, 2018, 2018, pp. 393–398. https://doi.org/10.1109/ASPDAC.2018.
8297355.

[7] E.A. Stott, J.S. Wong, P. Sedcole, P.Y. Cheung, Degradation in FPGAs: measurement
and modelling, in: Proceedings of the 18th Annual ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, FPGA ’10, ACM, New York, NY,
USA, 2010, pp. 229–238. http://doi.acm.org/10.1145/1723112.1723152.

[8] S. Srinivasan, R. Krishnan, P. Mangalagiri, Y. Xie, V. Narayanan, M.J. Irwin,
K. Sarpatwari, Toward increasing FPGA lifetime, IEEE Trans. Dependable Secure
Comput. 5 (2) (2008) 115–127, https://doi.org/10.1109/TDSC.2007. 70235.

[9] E. Stott, P.Y.K. Cheung, Improving FPGA reliability with wear-levelling, in: 2011
21st International Conference on Field Programmable Logic and Applications,
2011, pp. 323–328, https://doi.org/10.1109/FPL.2011.65.

[10] Z. Ghaderi, E. Bozorgzadeh, Aging-aware high-level physical planning for
reconfigurable systems, in: 2016 21st Asia and South Pacific Design Automation
Conference (ASP-DAC), 2016, pp. 631–636, https://doi.org/10.1109/
ASPDAC.2016.7428082.

[11] H. Zhang, L. Bauer, M.A. Kochte, E. Schneider, C. Braun, M.E. Imhof,
H.J. Wunderlich, J. Henkel, Module diversification: fault tolerance and aging
mitigation for runtime reconfigurable architectures, in: 2013 IEEE International
Test Conference (ITC), 2013, pp. 1–10, https://doi.org/10.1109/
TEST.2013.6651926.

[12] H. Zhang, M.A. Kochte, E. Schneider, L. Bauer, H.J. Wunderlich, J. Henkel, STRAP:
stress-aware placement for aging mitigation in runtime reconfigurable
architectures, in: 2015 IEEE/ACM International Conference on Computer-aided
Design (ICCAD), 2015, pp. 38–45, https://doi.org/10.1109/ICCAD.2015.7372547.

[13] J. Angermeier, D. Ziener, M. Gla, J. Teich, Stress-aware module placement on
reconfigurable devices, in: 2011 21st International Conference on Field
Programmable Logic and Applications, 2011, pp. 277–281, https://doi.org/
10.1109/FPL.2011. 56.

[14] V. Dumitriu, L. Kirischian, V. Kirischian, Run-time recovery mechanism for
transient and permanent hardware faults based on distributed, self-organized
dynamic partially reconfigurable systems, IEEE Trans. Comput. 65 (9) (2016)
2835–2847, https://doi.org/10.1109/TC.2015.2506558.

[15] T.D.A. Nguyen, A. Kumar, PR-HMPSoC: a versatile partially reconfigurable
heterogeneous Multiprocessor System-on-Chip for dynamic FPGA-based embedded
systems, in: 2014 24th International Conference on Field Programmable Logic and
Applications (FPL), 2014, pp. 1–6, https://doi.org/10.1109/FPL.2014.6927492.

[16] Y. Xiang, T. Chantem, R.P. Dick, X.S. Hu, L. Shang, System-level reliability modeling
for MPSoCs, in: 2010 IEEE/ACM/IFIP International Conference on Hardware/
Software Codesign and System Synthesis (CODESþISSS), 2010, pp. 297–306.

[17] T.D. Nguyen, A. Kumar, PRFloor: an Automatic Floorplanner for Partially
Reconfigurable FPGA Systems, 2016, pp. 149–158. http://doi.acm.org/10.1145/
2847263.2847270.

[18] Gurobi, Gurobi Optimization Version 6.0.2, 2017. www.gurobi.com.
[19] R.P. Dick, D.L. Rhodes, W. Wolf, TGFF: task graphs for free, in: Hardware/software

Codesign, 1998. (CODES/CASHE ’98) Proceedings of the Sixth International
Workshop on, 1998, pp. 97–101, https://doi.org/10.1109/HSC.1998.666245.

[20] Y. Hara, H. Tomiyama, S. Honda, H. Takada, Proposal and quantitative analysis of
the CHStone benchmark program suite for practical C-based high-level synthesis, J.
Inf. Proces. 17 (2009) 242–254, https://doi.org/10.2197/ipsjjip.17.242. Released
October 07, 2009, Online ISSN 1882-6652.

[21] OpenCores, 2017. www.opencores.org.
[22] EPFL, Combinational Benchmark Suite, lsi.epfl.ch/benchmarks.
13
[23] Xilinx, Intellectual Property, 2017. www.xilinx.com/products/intellectualproperty.
html.

[24] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, C. Gagn�e, DEAP:
evolutionary algorithms made easy, J. Mach. Learn. Res. 13 (2012) 2171–2175.

Siva Satyendra Sahoo received his B.Tech. degree in Instru-
mentation and Electronics Engineering from College of Engi-
neering and Technology, Bhubaneswar, India, in 2008, and the
M.Tech. degree in Electronics System Design from the Indian
Institute of Science, Bangalore, India in 2012. He is currently
pursuing the PhD degree in fault-tolerant embedded system
design with the Department of Electrical and Computer Engi-
neering, National University of Singapore, Singapore. His
research interests are fault-tolerance in heterogeneous
embedded systems, security design in embedded systems and
reconfigurable computing.
Tuan Duy Anh Nguyen has obtained the B.Eng. in computer
engineering from Ho Chi Minh City University of Technology,
Vietnam, in 2011, and the PhD degree in computer engineering
from National University of Singapore, Singapore, in 2018. His
interests are in Partially Reconfigurable Heterogeneous Multi-
processor System-on-Chip. He has published research works in
major FPGA conferences such as the International Conference
on Field Programmable Logic and Applications (FPL), Inter-
national Symposium on Field-Programmable Gate Arrays
(FPGA) and Asia and South Pacific Design Automation Con-
ference (ASP-DAC). His work was also nominated for the best
paper award at the FPL 2014. He is currently with the Tech-
nische Universit€at Dresden, Dresden, Germany, where he
works as PostDoctoral researcher at Chair for Processor Design.
Bharadwaj Veeravalli received his BSc degree in physics,
from Madurai-Kamaraj University, India, in 1987, the master's
degree in electrical communication engineering from the In-
dian Institute of Science, Bangalore, India in 1991, and the PhD
degree from the Department of Aerospace Engineering, Indian
Institute of Science, Bangalore, India, in 1994. He is currently
with the Department of Electrical and Computer Engineering,
at The National University of Singapore, Singapore, as a
tenured associate professor. His main stream research interests
include, cloud/grid/cluster computing, scheduling in parallel
and distributed systems, bioinformatics and computational
biology, and multimedia computing. He had successfully
secured several externally funded projects and published more
than 160 papers in high-quality International Journals and
Conferences and three research monographs.
Akash Kumar received his B.Eng. degree in computer engi-
neering from the National University of Singapore (NUS),
Singapore, in 2002, the masters degree in technological design
with a minor in embedded systems jointly from NUS and the
Eindhoven University of Technology (TUe), Eindhoven, The
Netherlands, in 2004, and the Ph.D. degree in electrical engi-
neering with a minor in embedded systems jointly from TUe
and NUS, in 2009. He is currently with the Technische Uni-
versit€at Dresden, Dresden, Germany, where he directs the Chair
for Processor Design. He has authored over 100 papers in
leading international electronic design automation journals and
conferences in his research areas. His current research interests
include design, analysis, and resource management of low-
power and fault-tolerant embedded multiprocessor systems.
Dr. Kumar was a recipient of the best paper award nominations,

including the Conference on Field Programmable Logic and
Applications (FPL) in 2014, GLSVLSI in 2014, SC in 2015, and
the Design, Automation & Test in Europe Conference (DATE) in
2015.

http://refhub.elsevier.com/S0167-9260(18)30260-8/sref1
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref1
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref1
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref1
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref1
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref1
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref1
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref1
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref1
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref1
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref2
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref2
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref2
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref2
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref2
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref3
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref3
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref3
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref3
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref4
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref4
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref4
http://doi.acm.org/10.1145/2591062.2591173
https://doi.org/10.1109/ASPDAC.2018.8297355
https://doi.org/10.1109/ASPDAC.2018.8297355
http://doi.acm.org/10.1145/1723112.1723152
https://doi.org/10.1109/TDSC.2007. 70235
https://doi.org/10.1109/FPL.2011.65
https://doi.org/10.1109/ASPDAC.2016.7428082
https://doi.org/10.1109/ASPDAC.2016.7428082
https://doi.org/10.1109/TEST.2013.6651926
https://doi.org/10.1109/TEST.2013.6651926
https://doi.org/10.1109/ICCAD.2015.7372547
https://doi.org/10.1109/FPL.2011. 56
https://doi.org/10.1109/FPL.2011. 56
https://doi.org/10.1109/TC.2015.2506558
https://doi.org/10.1109/FPL.2014.6927492
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref16
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref16
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref16
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref16
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref16
http://doi.acm.org/10.1145/2847263.2847270
http://doi.acm.org/10.1145/2847263.2847270
http://www.gurobi.com
https://doi.org/10.1109/HSC.1998.666245
https://doi.org/10.2197/ipsjjip.17.242
http://www.opencores.org
http://www.xilinx.com/products/intellectualproperty.html
http://www.xilinx.com/products/intellectualproperty.html
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref24
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref24
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref24
http://refhub.elsevier.com/S0167-9260(18)30260-8/sref24

	Multi-objective design space exploration for system partitioning of FPGA-based Dynamic Partially Reconfigurable Systems
	1. Introduction
	2. Background and related work
	3. System model
	3.1. Architecture model
	3.2. Application model
	3.3. Lifetime Reliability model

	4. Lifetime-aware system partitioning methodology
	4.1. DPR resource estimation
	4.2. PRM characterization
	4.3. Execution trace generation
	4.4. Optimization problem formulation
	4.4.1. MILP-based optimization
	4.4.2. GA-based optimization

	4.5. Floorplanning

	5. Experiments and results
	5.1. Experiment setup
	5.2. IP pool
	5.3. MILP-based system partitioning
	5.3.1. Lifetime Reliability-aware scheduling
	5.3.2. Lifetime-aware DPR-based system design

	5.4. GA-based multi-objective system partitioning

	6. Conclusion
	Acknowledgements
	Appendix A. Pareto plots for fat applications
	Appendix B. Pareto plots for slim applications
	References


